ar X iv : 1 50 2 . 06 01 5 v 1 [ m at h . R A ] 2 0 Fe b 20 15 m - KOSZUL ARTIN - SCHELTER REGULAR ALGEBRAS

نویسنده

  • PAUL SMITH
چکیده

This paper studies the homological determinants and Nakayama automorphisms of not-necessarily-noetherian m-Koszul twisted Calabi-Yau or, equivalently, m-Koszul Artin-Schelter regular, algebras. Dubois-Violette showed that such an algebra is isomorphic to a derivation quotient algebra D(w, i) for a unique-up-to-scalar-multiples twisted superpotential w. By definition, D(w, i) is the quotient of the tensor algebra TV , where V = D(w, i)1, by (∂w), the ideal generated by all ith-order left partial derivatives of w. The restriction map σ 7→ σ|V is used to identify the group of graded algebra automorphisms of D(w, i) with a subgroup of GL(V ). We show that the homological determinant of a graded algebra automorphism σ of an m-Koszul Artin-Schelter regular algebra D(w, i) is given by the formula hdet(σ)w = σ⊗(m+i)(w). It follows from this that the homological determinant of the Nakayama automorphism of an m-Koszul Artin-Schelter regular algebra is 1. As an application, we prove that the homological determinant and the usual determinant coincide for most quadratic noetherian Artin-Schelter regular algebras of dimension 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 54 92 v 1 [ m at h . R A ] 2 9 O ct 2 00 7 Koszul Equivalences in A ∞ - Algebras

We prove a version of Koszul duality and the induced derived equivalence for Adams connected A∞-algebras that generalizes the classical Beilinson-Ginzburg-Soergel Koszul duality. As an immediate consequence, we give a version of the Bernšte˘ ın-Gel'fand-Gel'fand correspondence for Adams connected A∞-algebras. We give various applications. For example, a connected graded algebra A is Artin-Schel...

متن کامل

On Koszul Algebras and a New Construction of Artin-schelter Regular Algebras

We prove the simple fact that the factor ring of a Koszul algebra by a regular, normal, quadratic element is a Koszul algebra. This fact leads to a new construction of quadratic Artin-Schelter regular algebras. This construction generalizes the construction of Artin-Schelter regular Clifford algebras. 1991 Mathematics Subject Classification. 16W50, 14A22.

متن کامل

ar X iv : 1 50 2 . 06 47 2 v 1 [ m at h . R A ] 8 N ov 2 01 4 Gröbner - Shirshov bases and PBW theorems ∗

We review some applications of Gröbner-Shirshov bases, including PBW theorems, linear bases of free universal algebras, normal forms for groups and semigroups, extensions of groups and algebras, embedding of algebras.

متن کامل

ar X iv : m at h / 07 02 07 5 v 2 [ m at h . R A ] 2 2 Fe b 20 07 LARGE ANNIHILATORS IN CAYLEY - DICKSON ALGEBRAS II

We establish many previously unknown properties of zero-divisors in Cayley-Dickson algebras. The basic approach is to use a certain splitting that simplifies computations surprisingly.

متن کامل

ar X iv : m at h / 06 09 73 2 v 2 [ m at h . SG ] 1 5 Fe b 20 07 GROUP ORBITS AND REGULAR PARTITIONS OF POISSON MANIFOLDS

We study a large class of Poisson manifolds, derived from Manin triples, for which we construct explicit partitions into regular Poisson submanifolds by intersecting certain group orbits. Examples include all varieties L of Lagrangian subalgebras of reductive quadratic Lie algebras d with Poisson structures defined by Lagrangian splittings of d. In the special case of g ⊕ g, where g is a comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015